Code: E371047 Automatic Control
Lecturer: doc. Ing. Mgr. Petr Klán CSc. Weekly load: 3+2 Assessment: Z,ZK
Department: 12110 Credits: 5 Semester: W,S
Automatic controllers are important part of many industrial processes. The goal of this course is to introduce students into basic knowledge of automatic control theory and practice like transfer functions, open versus closed loop control, design of controllers and frequency based analysis of control systems. The course also concentrates on logic control and control via programmable logic controllers.

Some seminaries are arranged in laboratories where practical skills and control engineering methods are trained. Students begin to work with MATLAB software as a common platform of control engineers (MATLAB is used on all including most of the laboratory classes).
1. Essential Principles of Automatic Control, Signals and Systems.
2. Digital Logic Control.
3. Combinatorial Logic Circuits and Controllers.
4. Programmable Logic Controllers, Sequential Logic Circuits.
5. Continuous Linear Systems, Laplace Transform.
6. Transfer Functions, Mathematical Models, Poles and Zeros.
7. Transient and Steady State Response Analysis.
8. Detailed Analysis of Selected Processes.
9. Open Loop and Closed Loop Control.
10. Design of Proportional, Integral and Derivative Controllers (PID).
11. Advanced PID Controllers.
12. Discrete-time based PID Controllers.
13. Frequency-Response Analysis.
14. Modelling Control Systems via MATLAB.
Recommended literature:
Ogata, K.: Modern Control Engineering (4th Edition), Prentice Hall,
Klan, P., Gorez, R.: Process control. FCC Public, Prague, 2011.
Dunning, G.: Introduction to Programmable Logic Controllers (2nd Ed). Delmar Learning, 2001.
Dorf, R.C., Bishop R.H.: Modern Control Systems (8th Edition). Addison-Wesley, 1998.
Laboratory support page:
Virtual laboratory availaible on:
automatic control, feedback control, stability, system dynamics